Home > News

News Archive
for other/older news items

News


Icy conditions continue 21 February 2018

The severe ice and snow that shut all telescopes at the Observatorio del Roque de Los Muchachos (ORM) for the first two weeks in February is slowly clearing, after temperatures finally rose above freezing on the 11th.

However, solid ice up to 50cm thick is packed in the enclosure mechanisms on the north-west side of the LT, out of sight of the exterior webcam. The ambient temperature is only just above freezing, and that, coupled with the lack of sunlight on that side of the building, means the ice is melting only very slowly. Removing the ice using antifreeze, salt or other chemicals is forbidden as the ORM is in a national park, and the salt especially would cause corrosion. Blasting the ice with a hot air blower would be very expensive for a start: we would need a huge device to deal with the amount of ice we need to melt, and we'd also run the very real risk of burning the hydraulic pipes and other mechanisms as the ice disappeared. Trying to chip the ice off also risks damaging the components underneath. So we are just having to wait for ambient conditions to remove the ice, and Winter is not yet over.

Update Fri 23rd Feb: The next bout of bad weather hit a little earlier than forecast; snow and ice now cover the roads at the mountaintop. The ORM have officially closed the roads leading to the telescopes, so engineering and maintenance support contractor Dirk Raback was not able to get to site today. More ice and sub-zero temperatures are expected over the weekend, which will no doubt deposit more ice on what we already have. Dirk will attempt to get to the LT again on Monday, but nevertheless we expect to be off-sky until Wednesday 28th February at the earliest.

The images on this page were taken by Dirk after he was first able to get to site on Monday 12th. They show the amount of ice still remaining on the enclosure, and the unusual shapes some of the ice formations took during the ice storm. The latest images are shown here, but see our Flickr "Telescope and Site" album for all of Dirk's recent ice images.


23rd Feb: "Road closed" sign on the mountain road near sea level. © 2018 Dirk Raback

23rd Feb: The closest Dirk could get this morning:
LT just visible at top. © 2018 Dirk Raback

21st Feb: Ice on enclosure ram mechanisms. © 2018 Dirk Raback

16th Feb: General ice coverage in vicinity of telescope. © 2018 Dirk Raback

12th Feb: Ice on signpost.
© 2018 Dirk Raback
OPTICON Call for Proposals for Semester 2018B 13 February 2018

The Optical Infrared Coordination Network for Astronomy (OPTICON) has issued its call for proposals for semester 2018B. Here is the full text of the call:

Ladies and Gentlemen

We are pleased to announce that the call for observing time at night time telescopes supported by the OPTICON Trans-National Access programme is now open. See http://www.astro-opticon.org/h2020/tna/call/call-2018b.html

The call will close on 28 February at 23.59UT exactly.

The Horizon 2020 contract has added two new robotic telescopes, a requirement to support time domain astronomy which is defined as a science category in its own right and some changes to the rules on applicant nationalities. We have also tried to define which facilities are best able to support various kinds of overrides, monitoring and time critical observations. Please review the web-page notes carefully, even if you have used the TNA programme before.

The semester is centred on Sept 2018 to Feb 2019, but there are small variations at some telescopes to accommodate their normal semesters and maximise scheduling flexibility. Note that technical support for the submission software is not provided out-of-hours and late applications will not be accepted, so please complete your application in plenty of time. In recent semesters we have received between 50-60 proposals and allocated about 15 projects per semester.

Good Luck
John Davies
OPTICON Project Scientist

CCI International Time Programme 2018-2019 Call for Proposals 05 February 2018
IAC logo

The Instituto de Astrofísica de Canarias' (IAC) Comité Cientifico Internacional (CCI) or International Scientific Committee of the Roque de los Muchachos (ORM, La Palma) and Teide (OT, Tenerife) observatories has issued a Call for Proposals for 2018, inviting applications for International Time Programmes (ITP) on telescopes installed at these Observatories. This includes the Liverpool Telescope.

The deadline for applications is 28th February 2018.

The ITP offers up to 5% of the observing time, evenly spread throughout the year and the lunar cycle. A proposal can request up to 15 nights/year of observing time. A proposal can cover a period of up to two consecutive years, i.e. in this case, up to a maximum of 30 nights / 160 hours per telescope can be requested. Proposals must include a justification of the time requested on each telescope.

The complete Call for Proposals document can be downloaded here. Further details and an application form can be obtained from the CCI ITP web site. Applications are made directly to the CCI, but for LT technical enquiries, please contact our Phase 1 Support or the Support Astronomer.

New Robotic Telescope workshop held in Liverpool 25 January 2018
NRT Workshop group photo
NRT Workshop group photo. Left to right: Marco Lam, Iain Steele, Robin Leatherbarrow, Abigail Lewis, Paulo Lisboa, Ian Baker, Adrian McGrath, Phil James, Suparerk Aukkaravittayapun, Chris Copperwheat, Saran Poshyachinda, Juan Cozar, Christophe Buisset, Helen Jermak, Thirasak Panyaphirawat, Apirat Prasit, Carlos M Gutierrez, Ahmed Al Shamma’a. Credit: Marco Lam.

On 18-19 January the Astrophysics Research Institute hosted LJMU's partners and prospective partners in the 4.0m New Robotic Telescope (NRT) project for a two-day workshop in Liverpool.

LJMU staff were joined by representatives from the Instituto de Astrofísica de Canarias, the National Astronomical Research Institute of Thailand, and by videolink the National Astronomical Observatory of China.

On the first day, following a tour of the Astrophysics Research Institute, the focus was on the new science the telescope will enable, with a series of presentations covering all of the major topics within the NRT science case. This was followed by a workshop dinner. As well as the delegates, the dinner was attended by Prof. Ahmed Al-Shamma'a, the Dean of the Faculty of Engineering and Technology; and Prof. Robin Leatherbarrow, the Pro Vice-Chancellor for Research.

NRT Workshop meeting
The NRT Workshop meeting. Credit: Marco Lam.

On day two, the focus was on the new technologies needed to build the telescope. Each group presented an overview of their technical capabilities, and then a lively debate was held over the various parameters of the NRT design. The meeting concluded with a round table discussion on the building and formalising of the funding consortium. This was an extremely fruitful exercise, being the first time the partners and current prospective partners have come together to discuss a way forward for the project, rather than meeting individually.

With the Lead Engineer and Project Manager for the NRT joining the LT group, and further project office recruitments underway in both Liverpool and Spain, this is an exciting time for us all as we move closer towards realising the goal of building the world's largest robotic telescope!

Interstellar visitor tracked with LT 10 November 2017
Animation of LT images showing Oumuamua movement
Animation of 'Oumuamua (dot, circled) moving against background stars, made from frames obtained by the Liverpool Telescope on 26 October 2017.
Credit: Alan Fitzsimmons.

The interstellar object currently exiting the Solar System has finally been named as ‘Oumuamua, Hawaiian for "reach out for" (‘Ou) and "very first/in advance of" (mua mua). Thus the name "reflects the way this object is like a scout or messenger sent from the distant past".

‘Oumuamua was first detected on 19th October by Robert Weryk at the Institute for Astronomy at the University of Hawaii using data from the Pan-STARRS telescope on Mauna Kea in Hawaii. After a few nights of routine observation, preliminary calculations showed it to be on an open-ended hyperbolic orbit, i.e. to have entered the Solar System from interstellar space. Moreover, it had already made its closest approach to the Sun some weeks earlier and was now receding rapidly from the inner solar system.

Previously, the only other interstellar emissaries known to exist were a handful of microscopic dust particles discovered in 2014 in an aerogel dust collector brought back to Earth by the comet sample return mission Stardust. ‘Oumuamua on the other hand is estimated to be approximately 160 metres in diameter.

As this object is the first interstellar visitor observed, and was also rapidly becoming fainter as days passed, it become a race against time to observe ‘Oumuamua as much as possible before it passed out of detection range forever.

Alerts were circulated around the global astronomical community in the early hours of 25th October. Later that day veteran LT user Alan Fitzsimmons of Queens University Belfast requested a priority observation via the LT's database, and that night the LT began observing ‘Oumuamua. The animated gif of Fitzsimmons' 26th October observations is at the top of this page. Below is imagery from the William Herschel Telescope taken by Fitzsimmons on 28th Oct.

‘Oumuamua (dot, centre) tracked against background stars by the William Herschel Telescope on 28th October.
Credit: Alan Fitzsimmons.

As a result of the efforts of astronomers around the world, not only has the orbit been definitively pinned down, but also aspects of its physical nature have been revealed. It's approximately 160 metres in diameter (assuming it reflects 10% of the sunlight falling on it), has a spin rate of possibly 6 hours, and has no cometary activity, despite getting as close as 0.25 AU from the Sun. Spectra are featureless and show its colour is red like a Kuiper Belt Object. That plus the lack of comet activity imply ‘Oumuamua must have spent so much time in the inner warmer reaches of its home star system that all volatiles had already disappeared by the time it left for interstellar space.

‘Oumuamua is now leaving the Solar System in the direction of the constellation Pegasus. By the time it leaves the Sun's influence, it will still be moving at over 26 kilometres per second, faster than any human-built spacecraft currently exiting our solar system. Efforts to trace its original stellar system, and where it might be headed in aeons to come, have so far been unsuccessful (the tiny errors in trajectory remaining after such a short arc of observations build up dramatically over millions of years). Given how relatively uncrowded stars are this far from galactic centre, ours might be the first Solar System ‘Oumuamua has encountered since it left home, possibly billions of years ago.


Left: Blue crosshair denotes ‘Oumuamua's position in the sky as it entered the Solar system centuries ago. Centre: Trajectory of ‘Oumuamua through the inner Solar system. Right: Position of ‘Oumuamua in the sky when it leaves the Solar system centuries hence. Credits: Left and right: Sky Safari 5 Pro & J. Marchant, Centre: JPL/NASA.
Liverpool Telescope project shortlisted for Research Project of the Year 04 October 2017
Shortlisted for THE Awards 2017 Research Project of the Year: STEM logo

Liverpool John Moores University (LJMU) is one of six institutions shortlisted for Research Project of the Year: STEM in this year's Times Higher Awards.

The nomination has been awarded for the use of the SPRAT spectrograph in the study of the unique recurrent nova M31N 2008-12a in the Andromeda Galaxy. SPRAT (SPectrograph for the Rapid Analysis of Transients) was designed and built in late 2014 by the LJMU telescope group. It uses volume phase holographic gratings to maximise efficiency and has proved to be a powerful tool for transient classification with minimal human intervention.

Novae are binary systems consisting of a white dwarf that is accreting material from its companion star. The build-up of material on the surface of the white dwarf eventually leads to a thermonuclear explosion. Some so-called recurrent novae show repeated nova eruptions, but until recently the fastest recurrence timescales were in the tens of years, with the typical timescale being much longer. M31N 2008-12a has a nova eruption every year — an unprecedented recurrence timescale. The research team at LJMU's Astrophysics Research Institute, along with their collaborators, have demonstrated this is due to the combination of a huge companion star and the most massive white dwarf ever detected in such a system, leading to an extremely rapid mass transfer rate. The high cadence spectroscopy from SPRAT has been crucial in understanding the nature of this object, and it is predicted to be the first of a whole new class of "rapid recurrent novae". Since the nova event does not completely eject the accreted material, the white dwarf continues to increase in mass, with a catastrophic Supernova Ia event being its eventual fate. The conservative upper limit on the timescale for this event is 20,000 years.

The awards ceremony will be held at the Grosvenor House Hotel in London on 30th November. The ARI previously won this award in 2007 for its RINGO optical polarimeter instrument on the LT.

Spectacular pictures added to LT Picture Gallery 26 July 2017
A small sample of the 70+ LT images submitted to the Gallery. © 2017 Göran Nilsson and Wim van Berlo.

An album of over seventy spectacular pictures made from LT data has just been added to the LT Picture Gallery. Follow this link to the new album on Flickr.

The pictures were made by taking archived greyscale IO:O data that had been observed through effectively red, green and blue filters, and combining them in various ways to produce colour images. Most of the original data had been requested over the years by UK schools via the National Schools' Observatory

This skilful post-processing was performed by Swedish amateur astrophotographers Göran Nilsson and Wim van Berlo.

Göran is a professor in animal physiology at the University of Oslo, and Wim is a physics and mathematics teacher in Stockholm. Both have been interested in astronomy and astrophotography for some time; Göran even built his own observatory in the Swedish countryside in 2014.

Living so far north has its drawbacks however when it comes to astrophotography in the summer. "During a four month period, from May through August, the sun hardly sets below the horizon, and it doesn’t get dark," says Wim. Göran, situated even further north, has the same experience: "The long light summer nights make astrophotography impossible for several months," he says.

To have something astronomy-related to do during this time, the two decided to use their growing astrophotography skills to process exposures that were freely available from the Liverpool Telescope's Data Archive. Together they sifted through all available data for each of the objects they chose, stacking and combining the frames. Göran used the program Nebulosity for stacking, following up with Adobe Photoshop for final contrast enhancements that reveal hitherto unseen fine detail. Wim performed the same tasks entirely with the single package PixInsight.

The result is over seventy stunning full-colour pictures of famous and some not-so-famous astronomical objects. We are certainly delighted with the pictures, and thank Göran and Wim for allowing us to host their work on our website.

Further imagery by Göran can be found on the astrophotography image hosting service Astrobin, while both Göran and Wim can be found at the Stargazers Lounge forum.

Useful links:

New filter for RISE 11 July 2017

RISE mechanical model

[UPDATE (26 July): The filter has now been changed. See the RISE instrument page for further details.]

The RISE fast-readout camera is having its "V+R" filter replaced with a 720 nm long-pass filter on 26th July 2017. This is being done to enhance the capabilities of the camera with regard to measurement of exoplanet transits around late-type, red dwarf stars.

More details of the filter switch can be found in the filter section of the RISE instrument page here.